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Gravitational peculiarities of a scalar field 

A Klebert, Carlos A P Galv5oSQ and A .F  da F Teixeiral 
+ Observatorio Nacional-CNPq, 2092 1 Rio de Janeiro, Brasil 
I Centro Brasileiro de Pesquisas Fisicas, 22290 Rio de Janeiro, Brasil 

Received 31 June 1979 

Abstract. The zero-adjoint of a time-static Ricci-flat solution to Einstein’s field equations is 
investigated. It represents a space-time curved solely by a massless scalar field. Cylindrical 
symmetry is assumed, to permit both planar and non-planar geodetic motions. Unusual, 
velocity-dependent gravitational features are encountered from these geodesics. 

1. Introduction 

The study of exact solutions of gravity coupled to other fields is important to understand 
clearly the physical and mathematical structure of space-time (Duncan 1977). For 
many reasons, the coupling of scalar fields to gravitation has been an object of special 
attention in recent years (Bronnikov 1978, Kodama et nl 1978, Buchdahll978, Chung 
et a1 1977, Bekenstein 1974,1975). In most cases, systems have been studied in which 
the scalar field coexists with other constituents, such as diffused matter or electromag- 
netic fields (Banerjee and Dutta Choudhury 1977, Teixeira eta1 1974,1975,1976). In 
such complex systems, however, the non-linearity of the field equations generally 
makes it difficult to see separately the gravitational peculiarities of each constituent. 

In this paper we study the gravitation associated with a massless, real scalar field, in 
the absence of any material source or other field. In contrast to the electromagnetic 
fields, the scalar field under static conditions can be described in terms of cosmic time. 
We consider a system with cylindrical symmetry, to permit both planar and non-planar 
geodesics. From the investigation of these geodesics, an interesting, velocity-depen- 
dent acceleration field is found, acting differently upon each component of the velocity 
vector. 

2. Gravitational and scalar potentials 

We are concerned with the line element 

ds2 = dt2-[(dr2+dz2)r2’ + r2  d&2], 

R,, = -2d,Sa,S, S = * J b l n r ,  ( 2 )  

h = constant a 0. (1) 
It satisfies the Einstein scalar field equations 
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where the dimensionless constant i J b  represents the strength of the long-range, 
attractive scalar field S.  The important feature of equation (1) is that it represents the 
gravitation from the pure scalar field, as is explained in some detail at the end of Q 4. 

The line element (1) can be obtained, without solving the field equations, in a variety 
of ways starting from the static, Ricci-flat solution with cylindrical symmetry (Weyl 
1917): 

(3) 

We are using c = G = 1 ; the constant a has the dimension of length and is set equal to 
one, for simplicity. Following Buchdahl (1978), we should simply write the zero- 
adjoint of (3) and set A 2  = b/4 to obtain equation (1). Alternatively, we can use the 
prescriptions of Teixeira et a1 (1976) and set the constant c2  equal to one in their 
attractive scalar field. Also, we could follow the method of Janis et a1 (1969) and let 
their constant A’+ CO. 

dsk,,, = (r/a)4A d r 2 - ( r / a ) - 4 A [ ( d r 2 + d z 2 ) ( r / a ) s A * + r 2  d4’]. 

3. Geodesics 

To investigate the gravitational features of equation (l),  we consider the geodetic 
differential equations 

where a dot means d/ds. With the restriction g,,xi”x” = 1, valid for time-like geodesics, 
we find the first integrals 

(6) 
2 1 / 2  s ’ = ( l - U )  , 

z‘ = vh/r2’, 

r ’ = i u r - b ( l - h  r > 

4’  = t l I / r2 ,  

2 -2h - ~ 2 ~ - 2 ) 1 / 2  

where a prime means dldr, and where the three parameters 0 G U < 1, h and I are 
constants of integration. 

A trival solution of equations (6)-(8) is obtained when U = 0, and corresponds to a 
particle at rest in the presence of the anisotropic fields. This interesting result is 
discussed in § 4. Other trivial solutions are obtained when b = 0, and correspond to the 
rectilinear, uniform motions in the flat space-time. 

The non-trivial solutions of equations (6)-(8) correspond to three types of motion: 

3.1. Motion on planes normal to the z axis 

Setting h = 0 in equations (7) and (8), we obtain 

dr ld4  = *[(r/l)’- 1]1’2r1-b. (9) 

111 is then the minimal radial location of the particle in its motion. Table 1 presents exact 
solutions of equation (9), obtained for some values of the parameter b. In figure 1 are 
drawn some solutions corresponding to 1 = 1.5; as in all cases where 1 2 >  1, these 
solutions represent spiral motions around the z axis. In the cases where 1 2 <  1, 
however, a different behaviour of the test particle is found near the z axis; in figure 2, 
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Table 1. Orbits b(r) in planes z =constant, for several values of b. The functions E and F 
are elliptic integrals (Dwight 1961). 

0 se_c-’R ( R  rjlll) 4 J 2 F  (sec-’ d g ,  1 / 4 2 ]  [=G(r)] 
1 cosh-’R 
$ 2(R-R-‘)’’2+G(R)-2d2E(sec-1 v’E, 1/45) 

4 :{2[R(R2-1)]”*+G(R)} 
3 $ [ R ( R 2 -  1 ) ” 2 + ~ ~ ~ h - 1 R ]  

2 [R2-1)”2 

Figure 1. Orbits in planes z =constant, for I = 1.5 and several values of b. Particles are 
attracted to the axis of symmetry, but nevertheless these always escape to the radial infinity. 

Figure 2. Orbits in planes z =constant, for i = 0.5 and several values of b. Particles are 
repelled from the z axis for short radial distances, and attracted for larger values of r. 
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corresponding to motions with 1 = 0.5,  we remark that all trajectories bend outwards 
for small values of r. 

It can be shown that the shape of orbits given by equation (9) can also be obtained 
from a non-relativistic, static, cylindrically symmetric potential 

V(r )  = -+u2[ (1  - r -26 ) ( l / r )2+r-2b] .  (10) 
However, the relativistic velocity of motion in the orbit differs from its non-relativistic 
analogue. 

3.2. Motion on planes containirig the z axis 

Setting 1 = 0 in equations (7) and (8) we obtain 

drldz = . t[(r/m)26 - 111”, (1 1) 

where m, given by m b  = Ih/, is the minimal value of the radial coordinate along the 
motion. Table 2 presents solutions of equation (1 1) for several values of b, while figure 
3 shows the corresponding orbits. We find that the trajectory of the particle always 
bends outwards, which indicates repulsion from the axis of symmetry. 

Table 2. Orbits z ( r )  in planes containing the z axis, for several values of b. The functions 
F ( d ,  k )  are elliptic integrals (Dwight 1961). 

As before, a non-relativistic potential can be obtained, producing the same orbits as 
equation (1 1): 

V(r )  = --$(vr6/h2)*. (12) 

However? the relativistic and non-relativistic velocities of motion again differ. 

3.3. Non-planar motions 

When h and 1 are non-zero, we obtain the following exact solution of equations (6) - (8)>  
for b = 1: 

z = sin p cosh-’ R, R =1 r /m ,  (13) 

q5 = cos ,!3 cosh-’ R,  (14) 

zit = t m2[R(R2  - 1)”’+ /cosh-’ R / I ,  (15) 

s = t(1- u 2 y ,  (16) 
where m = (h2+ 12)1’2 is the minimal distance from the axis of symmetry, and p = 
tan-’ h / l  is the angle of incidence on the plane z = 0. For t < O  the particle is 
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r / m  

Figure 3. Orbits in planes containing the z axis for several values of b and for arbitrary m. 
Particles are repelled from the z axis. 

approaching the z axis in a helical motion, and reaches the minimal radial distance r = m 
when t = 0. For t > 0 a helical motion is found with increasing radius. 

The solutions belonging to other values of b present similar basic features, but the 
corresponding mathematical expressions are rather involved. It can be shown that the 
non-planar orbits do not derive from any non-relativistic potential which is static and 
cylindrically symmetric. 

4. Discussion 

The source of gravitation of the system is concentrated around the axis of symmetry, as 
is seen from the scalar curvature, the square of the Ricci tensor, and the Kretschmann 
scalar: 

R = 2b/r2(b+1’, RF”R,, = R 2 ,  RFLYPURFVpU = 3R2.  (17) 

Since b a 0, all these quantities tend to zero at radial infinity. The same happens to the 
energy-momentum tensor, which is diagonal with components 

7’: = -Ti  = ‘T; = 7‘: = R / (  167)  3 0. (18) 

We found in 8 3 that a particle, once at rest, remains at rest. This is a consequence of 
the staticity of the metric with goo = 1. Such a type of metric does not seem possible 
when electromagnetic fields are present. 

The anisotropic state of stresses (18) is responsible for the peculiar, velocity- 
dependent gravitation originating from the scalar field. A radial acceleration field is 
found from equation (j), acting attractively upon the radial component of velocity of 
test particles, and repulsively upon the longitudinal component. We next compare the 
radial acceleration associated with the azimuthal velocity, = r(r/a)’-2b$2, with its 
analogue in the case of rectilinear motion, f2 = r ( r / a ) d 2 :  since f2 S f1  implies respec- 
tively r S a ,  we find that the azimuthal component of the velocity is acted upon 
attractively when r > a,  and repulsively when r < a. This explains the shapes of orbits in 
figure 2, drawn for a = 1. 



5 08 A Kleber, C A  P Galva’o and A F da F Teixeira 

One finds, from equation ( 6 ) ,  that U represents the modulus of velocity of the test 
particle. All the results obtained for time-like geodesics are then also valid for light-like 
geodesics, provided one sets U = 1. 

A final comment concerns the physical interpretation of the metric (1). This metric 
is now obtained explicitly, following the prescriptions given in Teixeira eta1 (1976). We 
start from the line element (3), where A is the linear density of matter in the weak field 
approximation, and obtain the intermediate solution 

ds2 = r4& dt2 - F4&[(dr2 + dz2)r8*’ + r 2  d&2], (19) 

(20) 

where c = constant. For weak fields, this intermediate solution corresponds to a linear 
density of matter p,  together with a linear source of scalar field CA. The original vacuum 
solution (3) corresponds to the special value c = 0, when the source of scalar field 
vanishes and p = A .  If we now stzrt from the vacuum solution, fix A and let c 2  increase, 
then the source of scalar field lcAi gradually increases, while the matter parameter p 
gradually decreases. We interpret this process as gradual substitution of the original 
matter by aii attractive scalar source. The substitution is completed when c2  = 1, in 
which case p = 0 and the line element becomes (l),  with b = 4A2. This fact strongly 
suggests that we should interpret (1) as the gravitation from the scalar field alone, at 
least in the weak field approximation. 

2 1/2 Rap = -2d,S dpS,  S = 2cA In r, p ~ A ( 1 - C )  , 
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